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1. INTRODUCTION

Best approximation by polynomial and Tchebycheffian spline functions
with both fixed and free knots has been thoroughly investigated in a
number of papers (see, e.g., [5] and references therein). Recently, in [8],
we have examined best approximation by certain classes of generalized
splines with fixed knots. The purpose of this paper is to study best
approximation by similar classes of generalized splines, but with free knots.
Our main results concern segment approximation and approximation by
continuously composed Tchebycheff systems. For these spaces, we treat the
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usual best approximation questions of existence, uniqueness, and charac­
terization.

We begin by defining the spline spaces of interest. Suppose
Olf = {u l' ... , Um} is a set of m linearly independent functions in C[a, b ]. For
most of the results of this paper we shall assume that Olf is a Tchebycheff
system, and at times will restrict Olf even further.

Given a partition L1 of [a, b] defined by a = X o< ... < X r + 1 = b, let
(= [Xi' xi+d and J i = [Xi' Xi+l] for i=O, ..., r-1. Let Jr=/r=
[x" X r + 1]. We define the space of piecewise Olf-polynomials with knots at L1
as

Y'0lf(L1) = {s: [a, b] ....... IR: SII,EOlf, i=O, ..., r}. (1.1 )

Given a positive integer k, we define the space of piecewise Olf-polynomials
with k Iree knots as

(1.2 )

While &'0lf(L1) is a linear space, clearly &'Olfk is a nonconvex set. We shall
also be interested in the following spaces of smoother piecewise functions,
provided that the elements of Olf are in C t [ a, b]:

(1.3 )

(1.4 )

Approximation using Y'Olfk is the topic of Section 2, where we discuss
general functions in C[a, b] as well as functions belonging to the convexity
cone associated with Olf. Results on approximation using Y'0lf2 can be found
in Section 3, while in Section 4 we show that for l~ 1, the spaces Y'0lf~ are
not suited for approximation since there exists a function in C t

- 1 [a, b]
which has no best approximation in Y'0lf~. In Section 5 we use the methods
of this paper to give an improved necessary condition for approximation
by polynomial splines with free knots.

In the remainder of this section we introduce some notation. Throughout
this paper we shall be concerned with the uniform norm. Given a function
g and interval J, we denote the uniform norm of g on the interval J by
II gil J' When there i~ no confusion about which interval we are working
with, we suppress the subscript J. Given a space of functions S and a
function IE C[a, b], we denote the distance of I to S by

d(j, S) = inf III - sII.
SE S
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If g E C[c, d], we say that g alternates p times on the closed interval
J = [c, d] provided that there exist points c~ to < ... < tp ~ d and
a E { - 1, 1} such that

g(t) = (-1)1allgll[c.d]' j=O, ...,p. (1.5)

The points {to, ..., tp } are called alternating extreme points of g. In general,
we write

A J (g) = max {p : g has p + 1 alternating extreme points in J}.

It will also be useful to have a notation for the pieces of splines. Given
s E f!JO/ik with r ~ k knots

we define

(1.6 )

for i=O, ..., r.

s(x) = {S(X),
I lim 1 _

xi
+! s(t),

for Xi~X<Xi+l

for x=xi +!,
(1.7)

2. SEGMENT ApPROXIMAnON

In this section we are interested in approximating a given function
f E C[a, b] by functions in f!JO/ik' To set the stage, we begin by stating a
well-known general result on segment approximation (cf. [3, 4]).

THEOREM 2.1. Suppose O/i is an arbitrary set of m functions in C[a, b ].
Then for any f E C[a, b], there exists at least one best approximation off in
f!JO/ik' Let s E flJIO/ik have r knots as in (1.6) such that

i=O, ..., r. (2.1 )

Then s is a best approximation off in f!JO/ik' While not every best approxima­
tion necessarily satisfies (2.1), there exists at least one which does. Moreover,
there exists at least one best approximation s off such that If - sl E C[a, b].

In general, a given f E C[a, b] will have more than one best approxima­
tion, and it is possible that none of the best approximations belong to
C[a, b] (see Example 2.2 below). Theorem 2.1 asserts that s is a best
approximation if for each i, the piece s; defined in (1.7) is a best
approximation of f on Jil and, in addition, that the errors d;= Ilf -s,IIJ"
i = 1, ..., n, are balanced. Example 2.2 also shows that for s to be a best
approximation, it is not sufficient that the errors di be balanced.
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EXAMPLE 2.2. Let f be the function

x, O~x~l

2-x, 1~x~2

f(x) = 0, 2~x~3

3-x, 3~x~4

x-5, 4~x~5,

153

and consider approximation from &'iJltl on [0,5] where iJIt consists of
U1 = 1.

Discussion. For each 2 ~ ~ ~ 3, let

{
h,

S~,h= -h,

These splines all have balanced errors, but they are best approximations of
f from !!J!iJltl only on the case when h = 0.5. This function has no continuous
best approximation. I

If iJIt is a Tchebycheff system, then the sufficient condition of Theorem 2.1
can be restated in terms of certain alternation conditions.

THEOREM 2.3. Suppose iJIt = {u;} T' is a Tchebycheff system and that
f E C[a, b]. Let s E &'iJltk be such that s has r knots as in (1.6). Suppose that
the errors are balanced as in (2.1), and that

i=O, ..., r. (2.2)

Then s is a best approximation off in &'iJltk . Moreover, there exists at least
one best approximation such that (2.2) holds.

Theorem 2.3 gives only a sufficient condition for a function s E &'iJltk to be
a best approximation of a given function f. In order to get a complete
characterization, we must put some conditions on the function f. In the
remainder of this section, we restrict ourselved to functions in the convexity
cone associated with iJIt. Assuming that iJIt is a Tchebycheff system satisfying

the corresponding convexity cone is defined by

% (iJIt) = {fE C[a, b]: D ( t I' , tm + fl) >°
U 1, , Urn'

for all a ~ t 1 < t2 < ... < tm + I ~ b }. (2.3 )
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Thus, iffEx(OlI), then the set {u 1 , ... , urn,f} forms an m+ 1 dimensional
Tchebycheff system.

In Theorem 2.7 below we give a complete characterization of best
approximations from ;JJOlIk under the assumption that f E X(OlI). First we
need a lemma.

LEMMA 2.4. Suppose that 0lI is a normed Tchebycheff system; i.e., U 1 = 1.
Let f E x(OlI), and suppose that [c, d] is a proper subset of [a, b]. Let u be
a best approximation off from 0lI on [c, d]. Then f - u alternates exactly m
times on [c, d]. More precisely, there exists points c = to < t I < ... < trn = d
and a E { - 1, I} such that

(-1 r aU - u)(t;) = Ilf - ull [c,d]' i=O, .."m, (2.4 )

In particular, both c and d are peak points. Moreover,

forall a~a<c, Ilf-ull[c,d]<llf-ull[~,d]' (2,5)

for all d < f3 ~ b, Ilf - ull [c,d] < Ilf - ull [c,P]' (2.6)

Proof Since 0lI is a Tchebycheff system, A [c,d]U - u) ~ m. The function
f - u cannot have more than m alternations, for if it did, then it would
have at least m + 1 zeros. This is impossible since f E x(OlI) implies that
f - u also lies in x(OlI). We now prove (2.5). Suppose that a ~ a < c, and
that Ilf-ull[c,d]=llf-ull["d]' Then at least one of the functions
g =f - u - Ilf - ull [~,d] or h;= f - u + Ilf - ull [~,d] has at least m + 1 zeros
on [a, d], where we count· each interior double zero twice. But this is
impossible since 1 E 0lI implies that both g and h lie in the m + 1 dimen­
sion~l Tchebycheff space spanned by {u 1 , ... , urn,f}, and hence can have at
most m zeros (cf., Theorem 4.2 of [2]). Clearly (2.5) implies that
IU -u)(c)1 = Ilf -ull[c,d]; i.e., c is a peak point off -u. A similar analysis
establishes (2.6) and the fact that d must also be a peak point off - u. I

We now give examples to show that Lemma 2.4 fails if we drop either
the assumption that 0lI contains U 1 == 1, or thatfEx(O/t).

EXAMPLE 2,5. Let

{

-I

f(x)= x-'2,

1,

l~x~3

3 ~x~4,

and consider approximation from the TchebychetT system 0lI on [0,4]
consisting of

{
X+ 1,

Ul(X)= 5-x,
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Discussion. It is easy to check that I is in %(Olt). Now for all °~ c ~ 1
and 3 ~ d ~ 4, the best approximation ofIon [c, d] is u = 0, but (2.5), (2.6)
fail to hold.

EXAMPLE 2.6. Let I be the function in Example 2.5, and consider
approximation from the TchebychefT system Olt consisting of the function
u l =1 on [0,4].

Discussion. Since 1- U 1=°on [3,4], I is not in %(Olt). Now for all°~ c ~ 1 and 3 ~ d ~ 4, the best approximation of Ion [c, d] is u = 0, but
(2.5), (2.6) fail to hold.

We are now ready for our characterization theorem.

THEOREM 2.7. Suppose Olt is a normed Tchebychell system, and that
IE % (Olt). Then there exists a unique best approximation s 01 I in &Oltk .

Moreover, s E f!J!Oltk is the unique best approximation if and only if it has
knots a=xo<x1< ... <Xk +1=b such that

and the errors are balanced with

i=O, ..., k,

111- sillJ; = d:= d(f, &Oltd, i=O, ..., k.

Proof The existence of a best approximation follows from
Theorem 2.1. Theorem 2.3 asserts that there exists a best approximation s
ofI such that I - s alternates at least m times on each subinterval J i defined
by the knots, and the errors are balanced. Since IE % (Olt), the function
1- s cannot alternate more than m times on any interval.

We now prove that if s is a best approximation, then it must possess k
knots. Suppose that s has only r < k knots, a = Xo< XI < ... < Xr+ I = b.
Let Xi = x;for i = 0, ... , r, and let Xr+1= (xr+ x r+1)/2 and xr+2 = b. Now by
Lemma 2.4,

Let So, ""Sr+1 be the best approximations ofI on the intervals Jo, ..., Jr+1•

We have

III -sIIJn, < d,

where S is the function whose pieces are so, ..., sr + l' Now it is clear that
starting with Xr + l' we can move each of the knots of s leftward to obtain
a better approximation of f. This contradiction establishes our assertion
that s must have k knots.

640/59/2.3
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It remains to prove the uniqueness of s. If s is another best approxima­
tion of f from !:Jj)(Jllk , it must also have k knots, say a = Xo< XI < ... <
xk + 1= b. But then for some i, j, the set J i= [XI' XI+I] is a proper subset
of Jj = [Xj' Xj+ 1]' But then by Lemma 2.4,

From this contradiction we conclude that s is the unique best approxima­
tion. I

Theorem 2.7 fails if any of the hypotheses are not satisfied. The following
example shows what happens when f is not in Jf (0/1).

EXAMPLE 2.8. Let f be the function in Example 2.2, and consider
approximation from the space f!j>0/I2 with 0/1 the set consisting of the single
function u1 = 1.

Discussion. It is not hard to see that d(f, &>0/12 ) = 0.5, and that this dis­
tance can be achieved only if the knots are chosen with X} ~ 1.5 and
X 2 ~ 3.5. Now clearly there are many best approximations, some of which
have only one knot. Clearly, all best approximations are discontinuous.

We conclude this section by showing that under the hypotheses of
Theorem 2.7, if m is even, the best approximation is continuous.

THEOREM 2.9. Suppose 0/1 is a normed Tchebycheff system consisting of
m functions with m even, and suppose that f E Jf (0/1). Then the unique best
approximation off from f!j>o/1k belongs to C[a, b].

Proof Let s be the unique best approximation of f, and suppose that
its knots are given by a = X o< XI < ... < X k + 1 = b. It is clear that s is con­
tinuous at all points except possibly the Xi' Thus, it suffices to show that
for each i = 1, ..., k, we have Sl+ 1(xJ = Si(X;). Fix 1~ i ~ k. Then since f - s
alternates exactly m times on J i , it follows that f - s must have zeros at
some points Xi < Zil < ... < Zim < Xi+I' Then, it is easy to see that for all
xEJi ,

(f -sJ(x) = D (ZI1' ...,Zim, X)/D (ZI1' ... , Zim).
Ul""'U m ,! Ul,,,,,U m

Since m is even while each of the knots is a peak point off - s, this implies
that (f-sJ(xJ=(f-SJ(Xi+I)=d. The result follows. I

Example 2.8 shows that Theorem 2.9 fails when f is not in Jf(O/I). The
following example shows that it also fails when m is odd.

EXAMPLE 2.10. Let f(x) = X on the interval [-1, 1], and consider
approximation from f!j>0/I} with 0/1 the set consisting of U 1 == 1.
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Discussion. All of the hypotheses of Theorem 2.9 hold except that m is
odd. Clearly, the unique best approximation off is the discontinuous spline
s= -0.5 +x~.

3. ApPROXIMATION FROM f/!JII2

In this section we are interested in approximating a given function
f EC[a, b] by functions in the space f/!JII2 defined in (1.4). Since f/!JII2 == !JII
in the case m = 1, we shall restrict our attention to the case where m ~ 2.
We begin with an existence result.

THEOREM 3.1. Given any f E C[a, b], there exists at least one best
approximation off from the space f/!JII2·

Proof Let Sn E f/!JII2 be a sequence with

Ilf - snll -+ d:= d(f, f/!JII2).

Let a = xn,o < ... < Xn.kn +1 = b be the knots of Sn' Since each Sn has at most
k knots, there is a subsequence, which we denote by Sn again, such that
Sn -+ S with s E f!JJ!Jllk and Ilf - sll = d. If s E C[a, b], we are done, so we
suppose now that s is discontinuous at some knot.

Suppose the knots of s are a=xO<x 1 < ... <xr +1 =b. Since each Sn is
continuous, if s has a jump at some knot Xj' then there must be a pair of
knots Xn,i and Xn,i+ 1 both of which converge to Xj' It follows that if s has
p jump discontinuities, then r ~ k - p. We now show how to modify s to
construct a function :s E f/!JII2 with Ilf - :Sll = d.

Suppose p = 1, and let xj be the knot where s has a jump discontinuity.
Without loss of generality, we may assume that s(x/) - s(xj- ) > 0, and
that for some sufficiently small 6> 0, f(x) - s(x) > 0 in (xj - 6, Xj)' Assume
that sR E f!lJ!Jllk is such that sR == S on [Xj' b] and that for all x E [a, Xj), S R

is defined to be the same polynomial as on the interval beginning at Xj'
Similarly, let sL E f!lJ!Jllk be such that s L == S on the [a, Xj), and that for all
x E [Xj' b], sL is defined to be the same polynomial as on the interval
ending at Xj' Since !JII is a Tchebycheff system on [a, b] and thus a
complete Tchebycheff system on (a, b), the functions Ul, ... , U i form a
Tchebycheff system on (a, b) for each i = 1, ..., m (see [10]), We now divide
the proof into two cases.

Case 1. (m=2). In this case there exists a unique qEspan{ul' U2} such
that

and
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5(X) = {g(X),
S(X),

XE (xi-b, x)
otherwise.

This construction has removed the jump discontinuity of s at xi' Moreover,
since sL - g and s R - g have no further zeros in (a, b), it follows that
SL(X)<5(X)<SR(X), if XE (xi-b, xi)' Hence Ilf -511 ~ Ilf -sll =d.

Case 2. (m ~ 3). In this case, there exists a unique g E span {u 1 , U2' U3}

such that g(xi-o)=sL(xi-b), g(X) = (SL(Xi )+SR(X))/2, and g(xi+b)=
SR(xi+b). Assume that x is the biggest zero of SL -g in (xi-b, xi) and x
is the smallest zero of sR- g in (xi' xi +b). Let

5(X) = {g(X),
s(x ),

XE(X,X)

otherwise.

This construction has removed the jump discontinuity of s at xi' Moreover,
since sL(X) < g(x) < sR(xi)' and by the choice of x and x, it follows that
SL(X) < 5(X) < SR(X), if x E (x, x). Hence, Ilf - 511 ~ Ilf - sll = d.

The above construction was carried out for the case where p = 1, i.e.,
where there is just one knot where s has a jump. If p > 1 we may apply the
same construction at each of the p knots. Since as noted above, r ~ k - p,
the resulting spline 5 still has at most k knots. Since Ilf - 511 ~ d, it follows
that 5 is a best approximation of f from g;iJIi~. I

Theorem 3.1 shows the existence of best approximations of functions
f E C[a, b] by splines in the space g;iJIi~. In general, we cannot expect
uniqueness (examples are easy to construct). Our next step is to try to
characterize best approximations in terms of alternations. The following
result provides a sufficient condition for best approximations, under an
additional assumption on the space iJIi.

THEOREM 3.2. Suppose that o/i = {u 1, ... , Urn} is a normed Tchebycheff
system offunctions in C 1[a, b]. Suppose that iJIi has the additional property
that

,ill'. {' , }
vU .= U2' ... , Urn (3.1 )

is also a Tchebycheff system on [a, b]. Given f E C[a, b], suppose that s
is a spline in /fiJIiZ with knots a = Xo< Xl < '" < Xr + 1 = b. In addition,
suppose that there exist p,q and points xp::sto< ... <tN::SXp+q+l with
N:=(q+ l)m+k-q-1 such that

f(t;) - s(t;) = (-1 r ad, i=O, ..., N,
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where d= Ilf -sll[a,bJ' aE {-I, I}, and

1= # {Xi: p + 1~ i ~p + q and s is differentiable at Xi}'

Then s is a best approximation offfrom YiJIIZ.

Proof Suppose:5 is a better approximation off than s; i.e., lif - :511 < d.
Then

( _1)i a(:5(tJ - s(tJ) > 0, i=O, ..., N,

It follows that h :=:5-s has at least one zero Zi in each interval (t i, ti+d.
Since Ilf - :511 < d, h cannot be identically zero on (Zi' Zi+ I)' It follows that
D+h has at least N -1 strong sign changes on J= (xp, xp+q+d. We shall
show that this is a contradiction,

First, note that h has at most k + q - c knots in J, where c is the number
of knots which are common to both sand s. Then h must be differentiable
at at least 1- c of its knots. Since D + h is piecewise in span(iJII'), it can have
at most m - 2 sign changes in each subinterval, and possibly one sign
change at each knot where it has a jump. We conclude that the number of
strong sign changes of D + h in J satisfies

S+(D+h) ~ (q+ l)(m -2) +k+ q-c- (1- c)

=(q+ 1)m +k-q-I-2 = N -2.

This is the desired contradiction, and the proof is complete. I
Our next theorem gives a necessary condition for a best approximation.

THEOREM 3.3. Assume that the space iJII satisfies the same assumptions as
in Theorem 3.2. Let s be a best approximation off E C[a, b] from YiJIIZ, and
suppose that the knots of s are a = Xo < XI < .. , < x r +1= b. Let jl < ... <jv
be the indices of the knots where D + s has jumps, and let jo =°and
j v+ I == r + 1. Then there must exist some °~ i ~ v and an associated p, q such
thatji~p<p+q+ 1~ji+1 and

(3.2)

Proof The idea of the proof is as follows: if s does not satisfy the
necessary condition (3.2), we show how to construct another spline
:5 E YiJIIZ which is a better approximation. For each i = 0, ..., v, let

and let
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where A j = {xji , x ji + j, ... , X ji +
I
}. This space has the interlacing property of

[6], and thus by Theorem 2.2 of [8], a necessary condition for a function
g E Y: to be a best approximation of f on K j is that there exist
Xj,~ x p < X p + q + 1 ~ Xj"l such that

Our assumption asserts that gj = s IKi is not a best approximation off on
K j from y:. Let gi be a best approximation, and define the sequence

Clearly, lis - gn,jll Ki --> 0 as n --> 00, and it is easy to see that for all n,

(3.3 )

Now in Lemma 3.4 below it is shown that the pieces gn,i can be joined
together to construct a spline SE g'IJItZ. It is easy to check that this can be
done so that the spline S satisfies

Ilf - ·~II [a,b] < Ilf - sll [a,b]'

This completes the proof. I
The following lemma is used in the proof of Theorem 3.3 above, and will

also be useful later.

LEMMA 3.4. Suppose that s E g'1JIt°(A), where the functions in IJIt lie in
C 1 [a, b]. Let s L = s I[a.~] and s R= s I[~,b], where 1'/ E A. In addition, suppose
that

and (3.4 )

Let A L = A (\ [a, 1'/] and A R= A (\ [1'/, b]. Suppose that s L,n E g'1JIt°(A L) and
s R,n E g'1JIt°(A R) are sequences of splines which converge uniformly to s Land
s R on JL = [a, 1'/] and JR= [1'/, b], respectively. We assume that s L.n is
defined for all x> 1'/ to be the same polynomial as in the interval ending at
1'/. Similarly, we suppose that s R,n is defined for all x < 1'/ to be the same
polynomial as in the interval beginning at 1'/. Then for all sufficiently large n,
there exists a point ¢n such that

Moreover, ¢n --> 1'/ as n --> 00.
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Proof Without loss of generality, we may suppose that
D_ SL(I'}) - D + SR(I'}) = 2e > O. Then for all sufficiently small/>, we have

SL(I'} + /» -SL(I'}) SR(I'} + /» -SR(I'})
l> > l> +&

Since SL(I'}) = SR(I'}), it follows that

A similar argument shows that

The function S L - SR changes sign at I'}. It then follows that for all n suf­
ficiently large, the function S L,n - S R,n must also change sign at some point
in the interval (I'}-l>, I'} + e5). We take ~n to be any such point. Since l> was
arbitrarily small, we can make sure that ~n is arbitrarily close to I'}. I

We have not obtained a complete characterization of best approxima­
tions from [/'IJIiZ. Indeed, the sufficient conditions of Theorem 3.2 do not
coincide with the necessary conditions of Theorem 3.3. The following
example shows a typical case.

EXAMPLE 3.5. Let f be the piecewise linear function which interpolates
the values {I, -1, 1, 1,2, 1,4} at the points { - 3, - 2, ..., 3}, and consider
approximation from the space [/'1JIi7 with u\(x) = 1 and U2(X) = x.

Discussion. The unique best approximation in this case is s(x) = x + . By
Theorem 3.2, sufficient conditions for a best approximation are that f - S

alternates at least three times on either [ - 3, 0] or [0, 3], or at least four
times on [ - 3, 3]. Theorem 3.3 asserts that a necessary condition for a best
approximation is that f - S alternates at least two times on one of the
intervals [ - 3,0] or [0, 3].

In the remainder of this section we assume that f E f(IJIi), where f(lJIi)
is the convexity cone (2.3) associated with 1JIi. As we saw in Section 2, in
the case where the dimensionality m of IJIi is even, approximation from f1JlJIik
is the same as approximation from [/'IJIiZ. Thus, we now restrict our
attention to the case where m is odd. The following theorem shows that in
this case approximation from the two spaces is indeed different.

THEOREM 3.6. Suppose iJ/j is a normed Tchebycheff system of at least
m ~ 3 functions with m odd. Then for every f E f (1JIi),

(3.5)
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Proof Let s be the best approximation offfrom f!JJO/Ik' By Theorem 2.7,
s has exactly k knots a = X o< XI < ... < Xk+ 1= b, and it alternates exactly
m times on each subinterval [x" Xi+IJ with both endpoints being peak
points. Since m is odd, in fact we have

(f - s)(xi -) = - (f - s)(x i +) = (Jd(f, f!JJO/Id, i= 1, ..., k,

where (J E { -1, 1}. Let SO be the best approximation of f from Y'0/I2, and
suppose that it has knots a = Yo < ... < Y r + I = b with r ~ k. Since
Y'0/I2 5; f!JJ0/Ik> we have Ilf - sll [a,b] ~ Ilf - sOil [a,b]'

Now if the knot sets of s and SO are different, then for some i, j, we have
[Xi' xi+IJ c [Yj' Yi+']. Then using Lemma 2.4, it follows that

d(f, Y'0/I2)"~ Ilf - sll [a,b] ~ Ilf - sll [Y" YI+ I]

> Ilf - slb"xi+l] = d(f, f!JJO/Id·

To complete the proof, we must consider the case where the knot sets of
s and SO are identical. Suppose Ilf - sll [a,b] = Ilf - sOil [a,b]' Then on each
interval [x;, X i + I), the alternation properties of s imply that s == so, But this
is impossible since SO is continuous while s is not. I

In the remainder of this section we restrict 0/1 and f even further. Suppose
0/1 is a set of m functions as in Theorem 3.2 with m odd. Associated with
0/1, define the cone of functions

where 0/1' is as in (3.1), First we present a lemma concerning best
approximation of functions in %1(0/1) by splines in Y'O/IO(LI), where LI is a
given set of knots a = X o< XI < ", < X k + 1 = b. As shown in [6J,

dim Y'O/IO(LI) = N = (k + 1)(m - 1) + 1.

This space has the interlacing property discussed in [6].

(3.6)

LEMMA 3.7. Suppose 0/1 is a set of m functions as in Theorem 3.2 with m
odd, and suppose LI is a given partition of [a, bJ with k knots. Suppose
f E %1(0/1) and s E Y'O/IO(LI). Then

Z[a,b](f-s)~N, (3,7)

where Z counts the number of zeros, and N is defined in (3.6). Moreover, if
Z [a,b](f - s) = N, then the set of zeros {t,} ~ off - s is poised with respect
to Y'O/IO(A); i.e., if {s I' ... , S N} is any basis for Y'O/IO(A), then

(3.8)
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Proof Let g=f-s and gi=gl[Xi,Xi+l) for i=O, ...,k, SincefE%I(IJIt),
g; has at most m - 1 distinct zeros in [Xi' Xi+ I]. If g; has exactly m - 1
distinct zeros Zi.1 < ... < zi,m-l> then

g;(X) = D (Zi,l: , zi'7- 1 : X)/D (Zi,1 'f ••. , Zi'~_I).
U2' , Urn, f U2' ... , Urn

This implies that

It follows that g;(Xi~) g;(xi+) <°can happen only if g; has at most m - 2
zeros in at least one of the intervals [Xi-I' X;] or [Xi' Xi+ I]. Since m is
odd,

Z[a,b](D + g) ~ N - 1= (k + l)(m -1),

where Z also counts jump zeros, Now Rolle's theorem implies (3.7).
Suppose now that Z[a,b](g)=N. In particular, suppose that the zeros of

g are ZI < .,. < ZN' We claim that

i= 1, ... , k, (3.9)

where

ni,j = dim Y'1JIt°(Lf) I[Xi,X
l

] = (j - i)(m - 1) + 1.

Indeed, by the above arguments,

and

Z[Xi,Xk+I](g) ~ (k + 1 - i)(m - 1) + 1.

These inequalities imply

(3.10)

and ZN-(k+l-i)(m-I)-1 <Xi (3.11 )

for each i = 1, ..., k. These are precisely the inequalities in (3.9) since nO,i =
i(m -1) + 1 and ni,k+ 1= (k+ 1- i)(m -1) + 1. Since Y'1JIt°(Lf) has the
interlacing property, (3.9) implies (3.8). I

W can now establish several useful properties of best approximants of
functions f in % 1(1JIt).

THEOREM 3.8. Let IJIt be as in Theorem 3.2 with m odd, and suppose
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f E .Y{ i (iJII). Then any best approximation s of f from !/iJIIZ must lie in
!/iJII1 \!/iJIIL ,. Moreover,

A [Xi,XJJU - s) < ni,j'

A[a,bJU -s)=N.

all i,jsuchthat[xi,xj]#[a,b] (3.12)

(3.13 )

Here ni,j and N are defined in (3.10) and (3.6), respectively,

Proof Let s be a best approximation off from !/iJIIZ, and suppose that
the knots of s are L1={a=xO<xi < .. · <xr+i=b}. We prove first that
r = k. Suppose r < k. Then we can insert a knot x r + 2 and renumber the
knots as J = {a=xo<x i < ... <xr+2=b}. This knot can be chosen so
that it lies in the interval whose endpoints are the last two alternating
extreme points of f - s. But then s cannot be a best approximation of f
from the space !/iJIIO(J), and hence also not from the space !/iJIIZ, since the
characterization Theorem 2.2 for approximation by generalized splines
using fixed knots given in [8] is violated. This contradiction establishes
that r = k.

Now applying the characterization Theorem 2.2 of [8] to the space
!/iJllo(L1), we conclude that there exist some 0 ~ p, q~ r + 1 such that

but

A (f-s)- n[Xp , xqJ - p, q (3.14 )

(3.15 )

for every choice of i, j with [Xi' Xj] a proper subset of [xp, x q].
We claim that both x p and x q are peak points of f - s, and that both

D+U -s)(xp) and D_U -s)(xq) are nonzero. To prove this, suppose that
xp is not a peak point or that D + U - s)(xp)= O. Then D + U - s) would
have zeros or sign changes at each of the first np,q peak points off - s. But
as shown in the proof of Lemma 3.7, D + U - s) can have at most np,q - 1
zeros in [x p , x q ]. This contradiction establishes the assertion that Xi is a
peak point off-s and that D+U-s)(xp)#O. A similar argument takes
care of x q •

We claim now that (3.14), (3.15) actually hold for p=O and q=r+ 1.
Suppose that this is not the case. In particular, suppose that
O~Pi <qj <P2< ... <pp<qp~r+1 are such that

j= 1, ..., p,

while (3.15) holds for all i, j with [Xi' Xj] a proper subset of [xPl' xqJ
Moreover, suppose that
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for all subintervals [xI" xv] C [Xqi ' xpi+J for all j=O, ..., p, where qo=O
and p p + 1 = r + 1. All of the endpoints of these intervals are peak points of
f - s with nonzero derivatives. Now on each of the intervals [xqi ' x

PJ
+ J, s

is not a best approximation with respect to Y'~O(L1) I[x . x. ], and hence
'fl' Pj+ I

we can find a perturbation Sj which is better. Proceedmg just as in the
proof of Lemma 3.4, these pieces can be joined together with the pieces
S I [xPj"x

qJ
] to get a spline s with

(3.16)

for which (3.15) holds for all i, j. But this is a contradiction since (3.16)
implies that s is a best approximation off among all splines with the same
fixed knots, while the lack of an interval satisfying (3.14) asserts that s
cannot be a best approximation of f from this space. This completes the
proof of (3.12), (3.13).

It remains to show that S belongs to C 1 [a, b]. Suppose s is not differen­
tiable at the knot Xi' By what we have already established, we know that
f - s alternates N times on [a, b]. Let the set of alternating peak points be
denoted by T. By (3.15), at most nO•i of these points fall in [xo, x;], while
at most ni,r+l of them all in [Xi,Xr+l ]. Since #T=N+ 1 =nO,i+ni,r+l' it
follows that Xi ¢ T. Now f - s does not alternate enough times to make s
a best approximation (with fixed knots) on either of the intervals [a, x;] or
[Xi' b]. But then we can perturb s on both of these intervals and then use
Lemma 3.4 to join them together with a new knot (replacing xJ to show
that s could not have been a best approximation of f. This contradiction
establishes the differentiability of s, and the theorem is proved. I

THEOREM 3.9. Let ~ be a set of functions as in Theorem 3.8. Suppose f
and g are two functions such that both f + g and f - g belong to %l(~).

Then

(3.17 )

Proof The assumption that both f + g and f - g lie in %l(~) implies
that f itself lies in %l(~). Now Theorem 3.8 asserts that if s is a best
approximation of f from Y'~~ with knots L1 = {a = Xo < Xl < ... <
Xk + 1 = b }, then f - s alternates exactly N = dim Y'~O( L1) times in [a, b] to
a height of d=d(f, Y'~Z).

Let Sl' ... , SN be a basis for Y'~O(L1). We claim now that both
{st> ...,sN,f+g} and {Sl, ...,SN,f-g} are weak-Tchebycheffsystems on
[a,b]. To establish this, let h=(f+g)-v with VEY'~o(L1). Lemma 3.7
now applies to assert that h has at most N zeros on [a, b], and the
assertion with f +g immediately follows. The assertion with f - g can be
established in exactly the same way.
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Now applying Theorem 2 of [9], we get

d(g, !FllI2) ~ inf II g - sll ~ inf Ilf - sll = d(f, Y0lI2)· I
S E 5P"Ilo(",) S E ,'1'''11°(",)

Theorem 3.9 is a generalization of well-known comparison theorems. In
particular, if 0lI= {1, x, ... , xm- I

}, andjCml(x) > Ig(rn)(x)1 for all XE [a, b],
then the hypotheses of Theorem 3.9 hold.

4. ApPROXIMATION FROM THE SPACE YOlI~ FOR I;:; 1

In this section we show that for I;:; 1, the space YOlI~ is not useful for
approximation, even when 0lI is very nice.

EXAMPLE 4.1. Let I;:; 1, and let g(x) = x'+. Let f be a function in
C'-I[ -1,1] such that Ilf -gil ~ 1,j(0) = -1 and

f(-ih)=(-I)i-l,

f(ih) = (-1 )i-l + (ih)',

i = 1, ... , 51

i= 1, ... , 51,

where h = 1/(5/). Let 0lI be the space of polynomials of degree 1+1, and
consider approximating f by YOlii.

Discussion. Clearly, for each n > 0, the spline sn(x) = nl(l + 1)
[x': 1 - (x-lin)': 1] belongs to YOlii. Moreover, Ilf -snll ~ 1 as n ~ 00,

and thus d(f, YOlIi) ~ 1. Now suppose that s is a best approximation of f
from YOlii. Then we must have

( - 1r 1 s( - ih) > 0

and

i = 1, ..., 51.

This implies that the function s - g must vanish in each of the intervals
L i := (- (i + 1)h, -ih) and R i := (ih, (i + 1)h) for i = 1, ... , 51-1. It follows
that s == g on some interval [a, b] with h < 0, and on some interval [c, d]
with 0 < c. But then s must have the form

s(x) = e[(x -!Xl )': I - (x - !X2)': I]

while it must also satisfy the condition s(x)=x' for X>!X2' For 1;:;2 it is
easy to see that this is impossible. On the other hand, for 1= 1, the condi­
tion requires that !X 2 = -!XI =!X > 0 and e > O. But then s(O) > 0, and so
Ilf- sll > 1 and s cannot be a best approximation since as noted above,
d(f, YOlIi) ~ 1. This contradiction completes the proof.
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5. POLYNOMIAL SPLINES WITH FREE KNOTS
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In this section we apply the idea inherent in Lemma 3.4 to obtain a new
result for the set Ym,k of polynomial splines of degree m with at most k free
knots, counting multiplicities (cr. [10]). Various necessary conditions and
sufficient conditions for a spline s E Ym,k to be a best approximation of a
given f E C[a, b] can be found in [1]. For example, it was shown in [1]
that if s E C[a, b], then it is a best approximation of f only if there exists
some p, q such that

p+q
A[xp ,Xp+Q+l](f-s)~m+ L mi+q+ 1,

i~p+ I

where m l , ... , m r are the multiplicities of the knots of s, and where q is the
number of knots in (xp , x p + q + d with multiplicity at most m - 1. The
following theorem is an improvement of this result.

THEOREM 5.1. Suppose s E Ym,k is a best approximation of f E C[a, b]
with knots a = Xo < XI < ... < Xr + I = b. Then there must exist some p, q such
that s E C I [xp, xp+q+I] and

p+q
A[xp,Xp +Q+l](f-s)~m+ L mi+q+ 1,

i~p+ I

(5.1 )

where for each i = 1, ... , r, the integer mi represents the multiplicity of the
knot Xi'

Proof The analysis divides into two cases.

Case 1 (m i~ m for all i = 1, ... , r). In this case s E C[a, b]. Let E be the
set of extreme points off-s; i.e., E={tE[a,bJ:lf(t)-s(t)/=llf-sll}.
Let 1~ VI < ... < VI ~ r be such that xv] has multiplicity m, and let x vo = a
and X V1 + 1 = b.

Case 1A. Suppose there exists 0 ~ J-l ~ I such that 0 is a best
approximation off - s on [x vp ' x vp +J with respect to the space ,c;;, of poly­
nomial splines on [x vp ' x vp +J of degree m with knots at x vp + I' ... , x vp +1~ I

of multiplicities m vp + I + 1, ..., m vp +1_ I + 1. Since mi~ m - 1 for
i=v,,+l, ...,v,,+l-l, it follows that ,c;;,CCI[xvp,XVp+l]. Then using the
classical characterization theorem for fixed knots (cf. [5]), there must exist
some p, q with v" ~ p < p + q + 1~ v" + 1 such that

p+q
A[xp'Xp+Q+l](f-s)~m+ L mj+q+1.

j~p+1
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Case 1B. Suppose that for all 0 ~ f.1 ~ 1 the function 0 is not a best
approximation ofl-s on [xv", xv"+J with respect to the space g;, defined
above. Then by the tangent method in [4] it follows that for each 0 ~ f.1 ~ I,
there exists a sequence of splines s?"n on [xv", x v"+,] with the same number
of multiple knots as s such that

for all nand

lim Ils-s?"nll =0.
n ---i' 00

Now arguing as in Lemma 3.4 (cr. also the proof of Theorem 3.8), it
follows that we can construct a spline S E Y'm,k with III - sll < III - sll. This
contradicts the fact that s is a best approximation of I from Y'm,k'

Case 2 (m;=m+ 1 for some 1 ~i~r). Let {}I < ... <it} be such that
the corresponding knots x j; have multiplicity m + 1. Let x jo = a and x jl +! = b.
Suppose there is some 1~ v~ 1such that s is a best approximation ofIon
[xj" xj,+J with respect to the set of splines with the same number of multi­
pIe knots as s in this interval. Then the assertion follows as in Case 1.
Otherwise, for each i = 0, ..., I, there exists a spline Sj with the same number
of multiple knots as s on the interval [Xj " Xi,. 1] which is better than S. But
then

would be a better approximation of I in Y'm,b which is a contradiction. I
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